
Symmetric vs. Sum Capacity of Rayleigh MAC

or: Probability of Achieving Fairness for Free

Elad Domanovitz and Uri Erez

June 19th, 2018
2018 International Symposium on Information Theory

Domanovitz, Erez 1



Orthogonal vs. non-orthogonal multiple access

How to share the medium: issue in both uplink and downlink

Orthogonal multiple access OMA (e.g., via time/frequency) has been
the dominant approach in past cellular comm. generations:

◮ FDMA (1G)
◮ TDMA (2G)
◮ Synchronous CDMA (2G & 3G)
◮ OFDMA (4G)

Any reason to consider other methods?
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Uplink

Consider for simplicity two-user MAC (extension to N-user is easy), each
terminal has single antenna

y = h1x1 + h2x2 + n

Both users have power P and σ2
n = 1
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Uplink

Traditional approach

Coordinate so that users don’t collide - 1 active user per DoF

Users that overlap (overloaded scenario) are treated as noise
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Uplink

Traditional approach

Upside: OMA is throughput optimal

Downside:
◮ Fairness issue- throughput optimality does not hold under individual

rate requirements
◮ Coordination may be a major issue (grant-free transmission) -

overloaded system

Non orthogonal multiple access (NOMA)

Capacity-achieving practical NOMA schemes
◮ Superposition coding + SIC + time sharing (power-domain NOMA)
◮ Rate splitting

Upside: Both achieve capacity region

Downside: Both require user coordination...
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Uncoordinated transmission

Definition

Multiple users transmit simultaneously (occupying same DoFs) with
equal power and equal rate

No ordering coordination: time sharing and rate splitting not
applicable...

Why is it important?

Next gen wireless communication:
◮ Is going to be very crowded
◮ Latency is major issue for some applications
◮ Ad-hoc networks

Coordination
◮ May entail large overheads
◮ May result in increased latency
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Multiple access capacity region: another look
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Successive Cancellation

Symmetric Capacity Time Sharing

Csym = maxmin(R1,R2)
where minimization over all
(R1,R2) ∈ capacity region

In theory: Symmetric
capacity =⇒ No
coordination

In practice...

The topic of this talk

What is the probability that symmetric capacity equals sum capacity?
◮ Less formally - how much do you pay for striving for fairness?

Practical multi-user detector for the symmetric capacity?
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Channel model

MAC: y =
N
∑

i=1

hixi + z

CSI at Rx

Equal average transmission power per antenna: P = 1

z ∼ CN (0, 1)

hi ∼
√

SNR · CN (0, 1) and i.i.d. (symmetric setting)
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Definitions

Sum capacity: Csum = log
(

1 +
∑

|hi |2
)

Capacity region (set of constraints):

C (h) =
∑

i∈S

Ri ≤ log

(

1 +
∑

i∈S

|hi |2
)

, S ⊆ {1, . . . ,N}

Symmetric capacity:

◮ Csym = max
R∈C(h)

min(R1, . . . ,RN) = min
S⊆{1,...,N}

1

|S | log
(

1 +
∑

i∈S

|hi |2
)

◮ CΣ−sym = N · Csym
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Symmetric vs. sum capacity

CΣ−sym = Csum ⇒ fairness comes for free!

But what are the chances of that happening?

Q1: What is P (CΣ−sym < R |Csum = csum) ?

Q2: Probability that CΣ−sym = Csum = log

(

1 +
N
∑

i=1

|hi |2
)

is?

We analyze the probabilities given Csum

Let’s start with Q2 on a concrete example: Csum = 2
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Symmetric vs. sum capacity

CΣ−sym = Csum ⇒ fairness comes for free!
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Symmetric vs. sum capacity

CΣ−sym = Csum ⇒ fairness comes for free!

But what are the chances of that happening?

Q1: What is P (CΣ−sym < R |Csum = csum) ?

Q2: Probability that CΣ−sym = Csum = log
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is?

We analyze the probabilities given Csum

Let’s start with Q2 on a concrete example: Csum = 2
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What is known

CΣ−sym ≤ Csum

(Implicitly from the MAC-DMT): SNR → ∞ ⇒ CΣ−sym
w .h.p.→ Csum
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Bottom line - two-user Rayleigh MAC

Theorem 1

For a 1 × 2 Rayleigh MAC with sum capacity Csum:

P(CΣ−sym < R |Csum) = 2 · 2R/2 − 1

2Csum − 1
; 0 ≤ R≤ C sum

P(CΣ−sym = Csum|Csum) = 1 − P(CΣ−sym < Csum|Csum)

= 1 − 2 · 2Csum/2 − 1

2Csum − 1
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Symmetric vs. sum capacity

More than two users

Inner and outer bounds

But why condition on Csum?

Elegant expressions...

Rayleigh (open-loop) outage probability
◮ All users (when they are active) transmit at a common target rate Rt

◮ Outage probability is then given by ECsum
[P(CΣ−sym < NRt |Csum)]

Simple MAC transmission protocol
◮ Receiver learns channel gains of active users
◮ Calculates CΣ−sym and notifies transmitters to each transmit at rate

R/N where R < CΣ−sym:
⋆ Trivial rate allocation

⋆ Minimal feedback

Implementation

But how do we achieve the symmetric capacity in practice?
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Candidate MUD for equal rate transmission: integer forcing

Equalization scheme introduced by Zhan ’10, et. al.
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How close IF to symmetric capacity?
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Figure: PDF of achievable rate given Csum = 8

Compared to the symmetric capacity, there’s room for improvement...

But we can do better!
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Extensions and improvements

First improvement
◮ IF can be used in conjunction (hybrid operation) with SIC
◮ For two-user MAC, when single-user constraint is the bottleneck, then

symmetric capacity can be achieved with SIC

Second improvement (lesson from MAC-DMT):
◮ When linear codes are used (uncoded QAM in original context...) -

need to use space-time coding

(Lu, Hollanti, Vehkalahti, Lahtonen (’11))
◮ Note: In case of a single transmit antenna, the transformation mixes

symbols from different time instances
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Extensions and improvements
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Figure: Symmetric capacity vs. IF for a two-user i.i.d. Rayleigh fading MAC with
Csum = 8.
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Extensions and improvements

We demonstrate using precoding suggested by Badr & Belfiore (’08)

[

y(t = 1)
y(t = 2)

]

= P1

[

x1(t = 1)
x1(t = 2)

]

+ P2

[

x2(t = 1)
x2(t = 2)

]

+

[

n(t = 1)
n(t = 2)

]

where

P1 =
1√
5

[

α αφ
ᾱ ᾱφ̄

]

, P2 =
1√
5

[

jα jαφ
ᾱ ᾱφ̄

]

and

φ =
1 +

√
5

2
, φ̄ =

1 −
√

5

2
α = 1 + j − jφ, ᾱ = 1 + j − j φ̄.
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Extensions and improvements
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Figure: Symmetric capacity vs. IF for a two-user i.i.d. Rayleigh fading MAC with
Csum = 8.
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Summary and outlook

Questions raised in this talk

What is the probability that symmetric capacity equals sum capacity?

Practical multi-user detector for the symmetric capacity?

Outlook

Can the bounds for the N-user MAC can be further tightened?

Can the performance of IF can be further improved by more
sophisticated space-time codes?

Other practical schemes which are closer to the symmetric capacity?
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Thank you for your attention
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Sketch of Proof: Two-User Rayleigh MAC

hi ∼ CN (0, SNR) and i.i.d ⇒ |hi |2 ∼ exp(SNR)

Normalize: ui =
1√

2Csum−1

hi

Given Csum

◮ |u1|2 + |u2|2 = 1 ⇒ zero-sum game
◮ |ui |2 given |u1|2 + |u2|2 = 1 is uniformly distributed over [0, 1]

(conditioning property of Poisson process)
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Sketch of Proof: Two-User Rayleigh MAC

CΣ−sym = N min
S⊆{1,...,N}

R({S}) = N min
S⊆{1,...,N}

1

|S | log
(

1 +
∑

i∈S

|hi |2
)

Two users, given Csum: CΣ−sym = min (2R({1}), 2R({2}),Csum)

R({i}) = log
(

1 + |ui |2(2Csum − 1)
)

P (CΣ−sym < R |Csum) =

P
(

|u1|2 < 2
R/2−1

2Csum−1

)

+ P
(

|u1|2 > 2
Csum−2

R/2

2Csum−1

)

⇒ P (CΣ−sym < R |Csum) = 2 2
R/2−1

2Csum−1

0 2
R/2−1

2Csum−1

2
Csum−2

R/2

2Csum−1
1

R({1}) Bottleneck R({2}) Bottleneck

Disjoint events
Domanovitz, Erez 19



General N : The Bottleneck

When N > 2:
◮ There are more possible bottlenecks to check (but remember the DMT

moral...)
◮ Need to analyze

P (R({S}) < R|Csum) =

P

(

|S |
N

log

(

1 + (2Csum − 1)
∑

i∈S

|ui |2
)

< R
∣

∣

∣

∑

|ui |2 = 1

)

◮ Possible bottlenecks {S} are no longer disjoint

Tool for analysis
◮ Given Csum, ui can be viewed as elements from a row taken from a

unitary matrix drawn from the CUE (Haar measure)
◮ Edelman 05’ - Singular value distribution of a truncated unitary matrix

(eigenvalues have Jacobi/MANOVA distribution)

⇒ lower and upper bounds
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General N : The Bottleneck

Theorem 2 - distribution of a specific set

For a 1 × N Rayleigh MAC with sum capacity Csum, the outage probability
for a set S ⊆ {1, 2, . . . ,N} is

P (R({S}) < R|Csum) =

P

(

|S |
N

log

(

1 + (2Csum − 1)
∑

i∈S

|ui |2
)

< R[
]

∑

|ui |2 = 1

)

=

B(2
R|S|/N−1

2Csum−1
; |S |,N − |S |)

B(1; |S |,N − |S |)

where 0 ≤ R ≤ Csum and B(x ; a, b) =
∫ x

0
ua−1(1 − u)b−1du is the

incomplete beta function.
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General N : The Bottleneck

P (CΣ−sym < R|Csum) = P

(

min
S⊆{1,2,...,N}

R({S}) < R|Csum

)

All sets with the same cardinality have the same outage probability

Pout(k ,R) , P(R({|S | = k} < R|Csum)

Union bound can be used to bound overall probability

Theorem 3 - lower and upper bound for N Rayleigh MAC

For a 1 × N Rayleigh MAC with sum capacity Csum, the outage probability
can be bounded as

max
k

Pout(k ,R) ≤ P (CΣ−sym < R|Csum) ≤
N
∑

k=1

(

N

k

)

Pout(k ,R)
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Upper and Lower Bounds
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Figure: Bounds vs. Empirical error probability for 1 × 4 channel with Csum/4 = 2
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