Symmetric vs. Sum Capacity of Rayleigh MAC or: Probability of Achieving Fairness for Free

Elad Domanovitz and Uri Erez

June 19th, 2018
2018 International Symposium on Information Theory

Orthogonal vs. non-orthogonal multiple access

- How to share the medium: issue in both uplink and downlink
- Orthogonal multiple access OMA (e.g., via time/frequency) has been the dominant approach in past cellular comm. generations:
- FDMA (1G)
- TDMA (2G)
- Synchronous CDMA (2G \& 3G)
- OFDMA (4G)
- Any reason to consider other methods?

Uplink

Consider for simplicity two-user MAC (extension to N-user is easy), each terminal has single antenna

$$
y=h_{1} x_{1}+h_{2} x_{2}+n
$$

Both users have power P and $\sigma_{n}^{2}=1$

Uplink

Traditional approach

- Coordinate so that users don't collide - 1 active user per DoF
- Users that overlap (overloaded scenario) are treated as noise

Rate Region of OMA

For two uses, with $0 \leq \alpha \leq 1$, can achieve

$$
R_{1}(\alpha)=\alpha \log \left(1+\frac{P}{\alpha}\left|h_{1}\right|^{2}\right) ; R_{2}(\alpha)=(1-\alpha) \log \left(1+\frac{P}{1-\alpha}\left|h_{2}\right|^{2}\right)
$$

Uplink

Traditional approach

- Upside: OMA is throughput optimal
- Downside:

Fairness issue- throughput optimality does not hold under individual rate requirements
Coordination may be a major issue (grant-free transmission) overloaded system

Non orthogonal multiple access (NOMA)

- Capacity-achieving practical NOMA schemes Superposition coding + SIC + time sharing (power-domain NOMA) Rate splitting
- Upside: Both achieve capacity region
- Downside: Both require user coordination...

Uncoordinated transmission

Definition

- Multiple users transmit simultaneously (occupying same DoFs) with equal power and equal rate
- No ordering coordination: time sharing and rate splitting not applicable...

Why is it important?

- Next gen wireless communication:
- Is going to be very crowded
- Latency is major issue for some applications

Ad-hoc networks

- Coordination

May entail large overheads
May result in increased latency

Multiple access capacity region: another look

- $C_{\mathrm{sym}}=\max \min \left(R_{1}, R_{2}\right)$ where minimization over all $\left(R_{1}, R_{2}\right) \in$ capacity region
- In theory: Symmetric capacity \Longrightarrow No coordination
- In practice...

The topic of this talk

- What is the probability that symmetric capacity equals sum capacity? Less formally - how much do you pay for striving for fairness?
- Practical multi-user detector for the symmetric capacity?

Channel model

- MAC: $\quad y=\sum_{i=1}^{N} h_{i} x_{i}+z$

- CSI at Rx
- Equal average transmission power per antenna: $P=1$
- $z \sim \mathcal{C N}(0,1)$
- $h_{i} \sim \sqrt{\mathrm{SNR}} \cdot \mathcal{C N}(0,1)$ and i.i.d. (symmetric setting)

Definitions

- Sum capacity: $C_{\text {sum }}=\log \left(1+\sum\left|h_{i}\right|^{2}\right)$
- Capacity region (set of constraints):

$$
C(\mathbf{h})=\sum_{i \in S} R_{i} \leq \log \left(1+\sum_{i \in S}\left|h_{i}\right|^{2}\right), S \subseteq\{1, \ldots, N\}
$$

- Symmetric capacity:

$$
\begin{aligned}
& C_{\mathrm{sym}}=\max _{\mathrm{R} \in C(\mathbf{h})} \min \left(R_{1}, \ldots, R_{N}\right)=\min _{S \subseteq\{1, \ldots, N\}} \frac{1}{|S|} \log \left(1+\sum_{i \in S}\left|h_{i}\right|^{2}\right) \\
& C_{\Sigma-\mathrm{sym}}=N \cdot C_{\mathrm{sym}}
\end{aligned}
$$

Need to analyze the bottleneck!

Symmetric vs. sum capacity

- $C_{\Sigma-\text { sym }}=C_{\text {sum }} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Symmetric vs. sum capacity

- $C_{\Sigma-\text { sym }}=C_{\text {sum }} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Symmetric vs. sum capacity

- $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Symmetric vs. sum capacity

- $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\mathrm{sum}}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Symmetric vs. sum capacity

- $C_{\Sigma-\text { sym }}=C_{\text {sum }} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\text {sum }}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Well, there are three faces so... $1 / 3$?

Symmetric vs. sum capacity

- $C_{\Sigma-\text { sym }}=C_{\text {sum }} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: What is $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}=c_{\text {sum }}\right)$?
- Q2: Probability that $C_{\Sigma-\mathrm{sym}}=C_{\text {sum }}=\log \left(1+\sum_{i=1}^{N}\left|h_{i}\right|^{2}\right)$ is?
- We analyze the probabilities given $C_{\text {sum }}$
- Let's start with Q2 on a concrete example: $C_{\text {sum }}=2$

Correct answer, explanation can be improved...

What is known

- $C_{\Sigma-\text { sym }} \leq C_{\text {sum }}$
- (Implicitly from the MAC-DMT): SNR $\rightarrow \infty \Rightarrow C_{\Sigma-\text { sym }} \xrightarrow{\text { w.h.p. }} C_{\text {sum }}$

- Our goal: analyze the (finite SNR) distribution of $C_{\Sigma \text {-sym }}$ given $C_{\text {sum }}$

Bottom line - two-user Rayleigh MAC

Theorem 1
For a 1×2 Rayleigh MAC with sum capacity $C_{\text {sum }}$:

$$
P\left(C_{\Sigma-\mathrm{sym}}<R \mid C_{\mathrm{sum}}\right)=2 \cdot \frac{2^{R / 2}-1}{2 C_{\mathrm{sum}}-1} ; 0 \leq R \leq C_{\mathrm{sum}}
$$

$$
\begin{aligned}
P\left(C_{\Sigma-\text { sym }}=C_{\text {sum }} \mid C_{\text {sum }}\right) & =1-P\left(C_{\Sigma-\text { sym }}<C_{\text {sum }} \mid C_{\text {sum }}\right) \\
& =1-2 \cdot \frac{2^{C_{\text {sum }} / 2}-1}{2^{C_{\text {sum }}-1}}
\end{aligned}
$$

Symmetric vs. sum capacity

More than two users

Inner and outer bounds

But why condition on $C_{\text {sum }}$?

- Elegant expressions...
- Rayleigh (open-loop) outage probability

All users (when they are active) transmit at a common target rate R_{t}
Outage probability is then given by $\mathbb{E}_{C_{\text {sum }}}\left[P\left(C_{\Sigma-\text { sym }}<N R_{t} \mid C_{\text {sum }}\right)\right]$

- Simple MAC transmission protocol

Receiver learns channel gains of active users
Calculates $C_{\Sigma \text {-sym }}$ and notifies transmitters to each transmit at rate R / N where $R<C_{\Sigma \text {-sym }}$:

Trivial rate allocation Minimal feedback

Implementation

But how do we achieve the symmetric capacity in practice?

Candidate MUD for equal rate transmission: integer forcing

- Equalization scheme introduced by Zhan '10, et. al.

- Idea: Decode linear combination of messages \Longrightarrow Invert

How close IF to symmetric capacity?

Figure: PDF of achievable rate given $C_{\text {sum }}=8$

- Compared to the symmetric capacity, there's room for improvement...
- But we can do better!

Extensions and improvements

- First improvement

IF can be used in conjunction (hybrid operation) with SIC
For two-user MAC, when single-user constraint is the bottleneck, then symmetric capacity can be achieved with SIC

- Second improvement (lesson from MAC-DMT):

When linear codes are used (uncoded QAM in original context...) need to use space-time coding
(Lu, Hollanti, Vehkalahti, Lahtonen ('11))
Note: In case of a single transmit antenna, the transformation mixes symbols from different time instances

Extensions and improvements

Figure: Symmetric capacity vs. IF for a two-user i.i.d. Rayleigh fading MAC with $C_{\text {sum }}=8$.

Extensions and improvements

- We demonstrate using precoding suggested by Badr \& Belfiore ('08)

$$
\left[\begin{array}{l}
y(t=1) \\
y(t=2)
\end{array}\right]=\mathbf{P}_{1}\left[\begin{array}{l}
x_{1}(t=1) \\
x_{1}(t=2)
\end{array}\right]+\mathbf{P}_{2}\left[\begin{array}{l}
x_{2}(t=1) \\
x_{2}(t=2)
\end{array}\right]+\left[\begin{array}{l}
n(t=1) \\
n(t=2)
\end{array}\right]
$$

where

$$
\mathbf{P}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\alpha & \alpha \phi \\
\bar{\alpha} & \bar{\alpha} \bar{\phi}
\end{array}\right]
$$

$$
\mathbf{P}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
j \alpha & j \alpha \phi \\
\bar{\alpha} & \bar{\alpha} \bar{\phi}
\end{array}\right]
$$

and

$$
\begin{array}{ll}
\phi=\frac{1+\sqrt{5}}{2}, & \bar{\phi}=\frac{1-\sqrt{5}}{2} \\
\alpha=1+j-j \phi, & \bar{\alpha}=1+j-j \bar{\phi} .
\end{array}
$$

Extensions and improvements

Figure: Symmetric capacity vs. IF for a two-user i.i.d. Rayleigh fading MAC with $C_{\text {sum }}=8$.

Summary and outlook

Questions raised in this talk

- What is the probability that symmetric capacity equals sum capacity?
- Practical multi-user detector for the symmetric capacity?

Outlook

- Can the bounds for the N -user MAC can be further tightened?
- Can the performance of IF can be further improved by more sophisticated space-time codes?
- Other practical schemes which are closer to the symmetric capacity?

Thank you for your attention

Sketch of Proof: Two-User Rayleigh MAC

- $h_{i} \sim \mathcal{C N}(0, S N R)$ and i.i.d $\Rightarrow\left|h_{i}\right|^{2} \sim \exp (S N R)$
- Normalize: $u_{i}=\frac{1}{\sqrt{2^{\text {sum }-1}}} h_{i}$
- Given $C_{\text {sum }}$
$\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}=1 \Rightarrow$ zero-sum game $\left|u_{i}\right|^{2}$ given $\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}=1$ is uniformly distributed over $[0,1]$ (conditioning property of Poisson process)

Sketch of Proof: Two-User Rayleigh MAC

- $C_{\Sigma-\mathrm{sym}}=N \min _{S \subseteq\{1, \ldots, N\}} R(\{S\})=N \min _{S \subseteq\{1, \ldots, N\}} \frac{1}{|S|} \log \left(1+\sum_{i \in S}\left|h_{i}\right|^{2}\right)$
- Two users, given $C_{\text {sum }}: C_{\Sigma-\text { sym }}=\min \left(2 R(\{1\}), 2 R(\{2\}), C_{\text {sum }}\right)$
- $R(\{i\})=\log \left(1+\left|u_{i}\right|^{2}\left(2^{C_{\text {sum }}}-1\right)\right)$
- $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}\right)=$
$P\left(\left|u_{1}\right|^{2}<\frac{2^{R / 2}-1}{2^{C_{\text {sum }}-1}}\right)+P\left(\left|u_{1}\right|^{2}>\frac{2^{C_{\text {sum }}-2^{R / 2}}}{2^{C_{\text {sum }}-1}}\right)$
- $\Rightarrow P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}\right)=2 \frac{2^{R / 2}-1}{2^{C_{\text {sum }}-1}}$
$R(\{1\})$ Bottleneck $\quad R(\{2\})$ Bottleneck

Disjoint events

General N: The Bottleneck

- When $N>2$:

There are more possible bottlenecks to check (but remember the DMT moral...)
Need to analyze

$$
\begin{aligned}
& P\left(R(\{S\})<R \mid C_{\text {sum }}\right)= \\
& P\left(\frac{|S|}{N} \log \left(1+\left(2^{C_{\mathrm{sum}}}-1\right) \sum_{i \in S}\left|u_{i}\right|^{2}\right)<\left.R\left|\sum\right| u_{i}\right|^{2}=1\right)
\end{aligned}
$$

Possible bottlenecks $\{S\}$ are no longer disjoint

- Tool for analysis

Given $C_{\text {sum }}, u_{i}$ can be viewed as elements from a row taken from a unitary matrix drawn from the CUE (Haar measure)
Edelman 05 ' - Singular value distribution of a truncated unitary matrix (eigenvalues have Jacobi/MANOVA distribution)

- \Rightarrow lower and upper bounds

General N: The Bottleneck

Theorem 2 - distribution of a specific set
For a $1 \times N$ Rayleigh MAC with sum capacity $C_{\text {sum }}$, the outage probability for a set $S \subseteq\{1,2, \ldots, N\}$ is

$$
\begin{aligned}
& P\left(R(\{S\})<R \mid C_{\text {sum }}\right)= \\
& P\left(\frac{|S|}{N} \log \left(1+\left(2^{C_{\text {sum }}}-1\right) \sum_{i \in S}\left|u_{i}\right|^{2}\right)<R[] \sum\left|u_{i}\right|^{2}=1\right)= \\
& \frac{\mathcal{B}\left(\frac{2^{R|S| / N}-1}{\left.2^{C_{\text {sum }}-1} ;|S|, N-|S|\right)}\right.}{\mathcal{B}(1 ;|S|, N-|S|)}
\end{aligned}
$$

where $0 \leq R \leq C_{\text {sum }}$ and $\mathcal{B}(x ; a, b)=\int_{0}^{x} u^{a-1}(1-u)^{b-1} d u$ is the incomplete beta function.

General N: The Bottleneck

- $P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}\right)=P\left(\min _{S \subseteq\{1,2, \ldots, N\}} R(\{S\})<R \mid C_{\text {sum }}\right)$
- All sets with the same cardinality have the same outage probability
- $P_{\text {out }}(k, R) \triangleq P\left(R\left(\{|S|=k\}<R \mid C_{\text {sum }}\right)\right.$
- Union bound can be used to bound overall probability

Theorem 3 - lower and upper bound for N Rayleigh MAC

For a $1 \times N$ Rayleigh MAC with sum capacity $C_{\text {sum }}$, the outage probability can be bounded as

$$
\max _{k} P_{\text {out }}(k, R) \leq P\left(C_{\Sigma-\text { sym }}<R \mid C_{\text {sum }}\right) \leq \sum_{k=1}^{N}\binom{N}{k} P_{\text {out }}(k, R)
$$

Upper and Lower Bounds

Figure: Bounds vs. Empirical error probability for 1×4 channel with $C_{\text {sum }} / 4=2$

